Averaging Principle for Systems of Reaction-Diffusion Equations with Polynomial Nonlinearities Perturbed by Multiplicative Noise

نویسنده

  • Sandra Cerrai
چکیده

We prove the validity of an averaging principle for a class of systems of slow-fast reaction-diffusion equations with the reaction terms in both equations having polynomial growth, perturbed by a noise of multiplicative type. The models we have in mind are the stochastic Fitzhugh– Nagumo equation arising in neurophysiology and the Ginzburg–Landau equation arising in statistical mechanics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Averaging principle for systems of RDEs with polynomial nonlinearities perturbed by multiplicative noise ∗

We prove the validity of an averaging principle for a class of systems of slow-fast reactiondiffusion equations with the reaction terms in both equations having polynomial growth, perturbed by a noise of multiplicative type. The models we have in mind are the stochastic Fitzhugh-Nagumo equation arising in neurophysiology and the Ginzburg-Landau equation arising in statistical mechanics.

متن کامل

Stochastic reaction - diffusion systems with multiplicative noise and non - Lipschitz reaction term

We study existence and uniqueness of a mild solution in the space of continuous functions and existence of an invariant measure for a class of reaction-diffusion systems on bounded domains of R , perturbed by a multiplicative noise. The reaction term is assumed to have polynomial growth and to be locally Lipschitz-continuous and monotone. The noise is white in space and time if d = 1 and colour...

متن کامل

Khasminskii type averaging principle for stochastic reaction - diffusion equations ∗ Sandra Cerrai Dip . di Matematica per le Decisioni Università di Firenze Via C . Lombroso 6 / 17 I - 50134 Firenze , Italy

We prove that an averaging principle holds for a general class of stochastic reactiondiffusion systems, having unbounded multiplicative noise, in any space dimension. We show that the classical Khasminskii approach for systems with a finite number of degrees of freedom can be extended to infinite dimensional systems.

متن کامل

Large Deviations for Stochastic Reaction–diffusion Systems with Multiplicative Noise and Non-lipschitz Reaction Term1 by Sandra Cerrai

Following classical work by Freidlin [Trans. Amer. Math. Soc. (1988) 305 665–657] and subsequent works by Sowers [Ann. Probab. (1992) 20 504–537] and Peszat [Probab. Theory Related Fields (1994) 98 113–136], we prove large deviation estimates for the small noise limit of systems of stochastic reaction–diffusion equations with globally Lipschitz but unbounded diffusion coefficients, however, ass...

متن کامل

Stochastic averaging for SDEs with Hopf Drift and polynomial diffusion coefficients

It is known that a stochastic differential equation (SDE) induces two probabilistic objects, namely a difusion process and a stochastic flow. While the diffusion process is determined by the innitesimal mean and variance given by the coefficients of the SDE, this is not the case for the stochastic flow induced by the SDE. In order to characterize the stochastic flow uniquely the innitesimal cov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2011